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Abstract
We present non-equilibrium classical molecular dynamics simulations for the lattice thermal
transport of SiC nanowires and bulk β-SiC. The thermal conductivity of the nanowires is
strongly reduced compared to the SiC bulk value. In our approach only the phonon contribution
to the heat flow is considered, neglecting any electronic components. We investigate the
dependence of the thermal conductivity on the wire cross section and consider the influence of
different wire surfaces on the thermal transport.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Modern electronics devices have sizes below 100 nm and
heat dissipation is a major issue. Generally, thermal
transport is mainly diffusive but for nanodevices, when
the phonon mean free path is larger than the device
dimensions, ballistic contributions might become important.
Early predictions that superlattices and nanowires would
have improved performance as thermoelectrics [1] attracted
much attention and many studies were devoted to the
thermal properties of superlattices [2, 3], nanowires [4–9],
and superlattice nanowires [10–12], in an effort to find
new, better, thermoelectric materials [13–16]. Recently a
systematic study of semiconductor nanowires pointed out
that the thermal conductivities in the nanoscale cannot
be extracted from the bulk thermal conductivities of the
materials [17]. Understanding thermal transport in the
nanoscale and designing materials with very high or very low
thermal conductivities would have an impact on electronic, as
well as optoelectronic devices, and will also help the design of
thermal barriers or new thermoelectric materials.

Concerning the thermal properties in the nanoscale, Si
nanowires are one of the most studied systems [7–10].
Recent measurements of thermal conductivity [6, 12] renewed
interest in theoretical modeling and many studies used either
the Boltzmann equation or molecular dynamics simulations
to explain the experimental results [7–10]. In dielectrics,
(e.g. semiconductors) the thermal flow is mainly attributed
to phonon transport, while in semiconductor nanowires the
modification of the phonon velocities due to confinement [10]
as well as surface and interface scattering increase the thermal
resistance.

Silicon carbide is an interesting material with potential
applications in high power electronics due to its high
breakdown field, and high thermal conductivity, while the
combination of mechanical and chemical stability make it a
possible candidate for use in high temperatures, high power,
high frequency, and in harsh environments. Nanowires and
other nanostructures of SiC have been fabricated using several
methods such as chemical vapor deposition, arc-discharge,
or using carbon nanotubes in vapor–solid, or solid–solid
reactions [18, 19]. Very thin nanowires were also reported
with only a few nanometers’ diameter [20]. In some cases
the fabricated SiC nanowires had a crystalline core coated with
amorphous material [21].

Theoretically, the methods to calculate the thermal
conductivity in the nanoscale generally fall in two main
categories: methods that solve the Boltzmann equation and
molecular dynamics simulations. The Boltzmann equation
approach was used in various levels of sophistication to
calculate the thermal conductivity [22, 23]. The simpler
approach for nanowires is to use the Kallaway formula [24],
considering the interface scattering. Going one step further
and modifying the Kallaway–Hall approach by using the
bulk phonon dispersion gives results that can explain the
experimental findings for nanowires with diameters larger than
30 nm [9, 25]. Improvements in this approach have taken
into account the nanowire phonon dispersion which is modified
due to confinement. The studies on Si and Ge nanowires also
reported good agreement with the experimental results [26, 5].
A direct solution of the Boltzmann equation is also possible
either analytically or numerically, using the correct boundary
conditions for the nanostructures [7, 26].
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Overall the Boltzmann equation approach has some ad-
vantages since many effects can be included and systematically
studied, while good agreement with experiment was obtained
in many cases. The method is also computationally efficient
compared with the atomistic, molecular dynamics, methods.
However, in many cases the predictive power is limited since
adjustable parameters are required to allow comparison with
experiments.

In recent years, molecular dynamics methods have also
been used to study thermal transport. There are mainly two
approaches: the equilibrium method which is based on the
Green–Kubo formalism and linear response that connects the
thermal conductivity to the correlation of the heat current
(see e.g. [27] and references therein). The second so-called
non-equilibrium or direct approach calculates the thermal
conductivity using the Fourier law after a temperature gradient
is established in the sample by creating a steady heat flow.
The two approaches were shown to produce the same results in
bulk Si if convergence is reached [27]. Finite size effects have
a different influence on the two methods and require special
attention [28]. The molecular dynamics method is useful for
very thin layers, nanowires, and structures with dimensions of
a few nanometers.

Essentially, the molecular dynamics approach requires
no assumptions on the nature of the scattering mechanisms
that dominate the thermal transport. On the other hand,
the method is computationally very intensive and depends
critically on the choice of the interatomic potential used.
The computational requirements restricted all studies up to
now to classical empirical potentials, since more realistic
tight-binding methods are computationally more demanding.
This is the main drawback of the method since the quality
of the interatomic potential can influence the results [29].
The molecular dynamics method was also compared with the
Boltzmann equation approach [30] and satisfactory agreement
was found.

Lately, there is an increased interest in the thermal
properties of the nanoworld [13, 16]. Atomistic simulations
can give detailed information about the influence of interfaces
which is not easily accessible by other methods, and they are
also useful in nanosystems where the atomic structure cannot
be ignored. We will use the ‘direct’ molecular dynamics
method to study SiC nanowires with transverse dimensions
from 2 to 4 nm; our study is more relevant to the thinnest
nanowires fabricated [20].

2. Theoretical method

A classical molecular dynamics (MD) simulation computer
code was developed using standard methods [31]. The
equations of motion are integrated using a velocity-Verlet
algorithm. The interaction between the atoms is described with
an empirical, classical potential which depends only on the
relative position and the type of atoms. Short range potentials
allow the study of systems with a few thousand atoms.

For SiC there exist several polytypes, one of the
most common is the zinc-blende structure (β-SiC). There
are also a few empirical potentials developed for SiC

and some comparative studies in order to evaluate the
potentials [29]. We used the potential developed by Tersoff
for SiC. The form of this potential was used for Si and
C and was also extended to binary systems like SiGe and
SiC. This potential was used by Halicioglu [32] to study
the energy and structure of the β-SiC (100) surface. We
have repeated and confirmed those calculations to test our
method. Additionally a version of the potential with a
varied cutoff was used to calculate full phonon dispersions,
surface relaxations, and thermal expansion coefficients [33].
More recently Shimojo et al have successfully used a new
potential to describe the structural transformation of SiC
under pressure [34]. The Tersoff potential with small
modification was used to study the thermal conductivity
of bulk SiC and the influence of native defects using the
equilibrium MD method [35]. In that study reasonable
agreement with experiment was found when a temperature
rescaling was used to account for quantum corrections at low
temperatures. A comparison of different empirical potentials
for SiC was recently reported by Crocombette et al [29] in
simulations of the thermal conductivity of irradiated SiC. All
the potentials are designed to reproduce mainly bulk properties
and we have chosen the Tersoff potential parameterization for
SiC [36]. Despite the fact that this potential underestimates
the thermal conductivity of bulk β-SiC, as demonstrated
by Crocombette et al, eventually the differences between
parameterizations are negligible if we consider SiC with a
different nanostructure [29], as we do in this work.

The nanowires and the bulk were prepared at the zero
temperature equilibrium lattice constant a = 0.4321 nm and
then allowed to reach equilibrium at the desired temperature
for 50 000 time steps using a Berendsen constant temperature
thermostat [31]. For the bulk we used long rectangular
supercells with a square cross section 2a×2a which extended a
few hundred nanometers along the [100] direction. A periodic
boundary was used in all three dimensions. The SiC nanowires
were constructed in a similar manner, but finally removing
some outer layers to achieve either Si or C terminated wires
with a square cross section. We consider wires with three
different cross sections 5a × 5a which gives approximately
2.05 nm × 2.05 nm, uniformly terminated wire, 2.92 nm ×
2.92 nm (7a × 7a), and 4.21 nm × 4.21 nm, a 10a × 10a wire.
We use periodic boundary conditions in the wire direction with
a varying period of L ≈ 20, 30, 40 nm in order to check
any influence of finite size effects on our results. Since the
transverse dimensions of the nanowires are much smaller than
the phonon mean free path, no finite size effects were observed,
as is discussed below, but the results obtained for the wires
of different periodicity where used as an error estimate for
our calculations. The size of the systems studied ranged from
around 8000 to almost 70 000 atoms.

Thermal expansion is small in SiC [35] and was neglected
in this study, moreover using a free boundary for the
wires helps to partially release the stress build. The
initial equilibration was followed by the non-equilibrium MD
calculation [27] where a temperature gradient is established by
adding and subtracting heat at different parts of the nanowires.
The time step was chosen �t = 0.3 fs to insure adequate
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Figure 1. Variation of the local temperature along the wire for a
nanowire of (2.92 × 2.92 nm2) cross section. The straight line is a
least squares fit to the data between source and sink.

convergence. Heat was added at L/4 and subtracted at 3L/4
on each time step and the thermal conductivity is calculated
from the local temperature variation. The procedure suggested
by Jund et al [37] was used in order to achieve energy
conservation during the MD run. The heat current is given
by [27] J = �ε/2A�t , A is the wire cross section, we have
tried different �ε, typically �ε = 1.7 × 10−4 eV for bulk and
�ε = 4.3 × 10−4 eV for nanowires was used.

The results for a typical example of such a run are shown
in figure 1, where we show the temperature gradient for the
case of a wire of square cross section and edge of 2.92 nm
and a supercell length 20 nm. We consider slices of the wire
where the local temperature was calculated by averaging the
kinetic energies of the atoms inside each slice, typically 30
slices are used. The gradients were obtained using the points in
the linear regions, excluding the points for slices of the source
and sink as well as the points at the immediate vicinity. We
apply periodic boundary conditions along the wire direction so
that two temperature gradients can be extracted. The difference
in the two slopes is usually small and gives an estimate of
the error, in practice we calculate the average of the two
slopes. The thermal conductivity κ is obtained directly from
the Fourier law:

J = −κ∇T (1)

where J is the heat current and ∇T the temperature gradient.
In the case of nanowires, the local temperature in each slice of
the wire reaches convergence after ∼4–5 × 105 time steps. For
the bulk calculations 4–5 times more time steps are required.
The averaging for the calculation of the thermal conductivity
included only the last 5×105 MD steps. The initial time during
which a heat imbalance was applied was enough to establish a
steady heat current in all cases presented here. Free boundaries
are used in the calculations on the nanowires and this was
problematic in some cases, especially for C terminated wires
at higher temperatures. Moreover in some cases the initial
equilibration was not sufficient and imposing the heat source
and sink resulted in a small increase (5–10 K) in the wire
equilibrium temperature.

Figure 2. Dependence of �T/�x on the inverse of the supercell
length 1/L for bulk β-SiC at T = 500 K. Extrapolation to 1/L = 0
gives a value �T/�x = 0.80 ± 0.21 which corresponds to
κ = 77 ± 20 W m−1 K−1 in the limit of infinite supercell length.

3. Results and discussion

3.1. Bulk β-SiC

The measured thermal conductivity of bulk SiC is κ ∼
330 W m−1 K−1 at room temperature and drops to κ ∼
210 W m−1 K−1 around 500 K (look at Li et al [35] and
references therein). The non-equilibrium MD is probably
not the method of choice to study bulk properties, since the
thermal conductivity is rather high, the mean free path of
phonons is long, and big supercells are required to achieve
converged results. However, in order to have a reference
for the calculations of nanowires we first consider bulk β-
SiC. We use long supercells with 0.8642 × 0.8642 nm2 cross
section and length ranging from 100 to 400 nm. Following the
arguments of Schelling et al [27], we consider the dependence
of �T/�x = −J/κ on the inverse of the supercell length
which is shown in figure 2. The linear dependence allows
the extrapolation to supercells of infinite size and we extract
a value κtheo. ∼ 77 ± 20 W m−1 K−1 which is less than
half the experimental value. However, our bulk value is in
accordance with other equilibrium MD calculations of the
thermal conductivity of β-SiC using the same potential [29].

3.2. SiC nanowires

For nanowires it is interesting to investigate the influence of the
wire cross section on the thermal conductivity. Additionally we
study the effect of different surface terminations by considering
wires of the same cross section but different surfaces with Si
only and C only.

The variation of the thermal conductivity with the wire
transverse dimension is shown in figure 3 for both Si and
C terminations at a temperature of 500 K. The thermal
conductivity is strongly reduced compared to the bulk value,
due to the confinement which reduces the phonon mean free
path as well as to the phonon scattering on the wire surface.
This is the general trend reported for different semiconductor
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Figure 3. Thermal conductivity of SiC nanowires with C (circles)
and Si (squares) terminations at T = 500 K for wires with square
cross sections and different transverse dimensions.

nanowires. Our results show that the C terminated wires have
almost 20% higher conductivity compared to the Si coated
ones. An important feature is the increase of the thermal
conductivity with the wire’s transverse dimension. Previous
studies on Si nanowires of similar dimensions [4] reported a
power law increase of κ with the wire’s transverse dimensions,
but our calculations are not sufficient to resolve whether the
increase is linear or power law. Interestingly this increase of κ

seems to be similar for both terminations.
The difference between Si and C terminations is

interesting and deserves further study. In figure 4 we show
representative snapshots of Si and C terminated wires of the
same cross section, both snapshots are taken towards the end
of the simulations with a steady heat current present. An
interesting observation is that the Si surfaces appear to have
stronger disorder compared to the C ones and this is a general
trend observed in wires with different cross sections. This
observation supports the lower thermal conductivity values
for the Si terminated wires due to stronger scattering on a
more disordered surface. We can compare our results with
the work of Khitun et al [26]. In that work, the phonon

dispersion for a free and a clamped surface nanowire of
20 nm diameter was calculated. The difference in group
velocity between the different terminations was found to be
small so there was little change in the thermal conductivity.
However, a clamped surface boundary generally gave lower
thermal conductivity. The influence of free and rigid boundary
conditions was discussed also by Volz and Chen [4] but their
results did not show any clear trend. However, those authors
report that the thermal conductivity decreases as the scattering
at the wire surface becomes more diffusive. This was also the
conclusion of Zoo and Balandin [5]. Our results also support
this conclusion.

On the other hand the effect of surface scattering is
probably more complicated, as was demonstrated by Mingo
and Yang [38] who considered thermal transport in nanowires
coated with an amorphous material and found that the
phonon relaxation length has a minimum for a certain
strength of the coupling between the wire and the coating
and increases for both stronger and weaker coupling. This
means that the strength of the coupling to the surface atoms
is an important parameter which is usually neglected in
the solution of the Boltzmann equation. In a Boltzmann
equation approach, different terminations are usually modeled
by different interface specularity parameters. From the
calculations of Volz and Chen [4] we can see that the increase
of thermal conductivity with the wire diameter does not depend
on the specularity parameter. This is consistent with our MD
results shown in figure 3 where the dependence on the cross
section is similar for both terminations.

To conclude this part, our study goes beyond a model
parameter study and gives some quantitative information on
the influence of termination of SiC nanowires by using realistic
interatomic potentials. To our knowledge, so far there has been
no measurement of the thermal conductivity of SiC nanowires.
However, the structure of the SiC nanowires strongly depends
on the fabrication method. This lack of experimental data
on well characterized samples motivated our generic model
with a square cross section in the [100] direction because the
geometrical structure is simple and remains the same for all the
wires and different terminations considered. The advantage of
simple square cross section is that the effects of bond strength

Figure 4. Ball and stick model of the SiC nanowires considered in this work. The figures are snapshots of MD runs at the same temperature
for 2.92 × 2.92 nm2 with Si termination (left) and C termination (right) both simulations are for T = 500 K.
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Figure 5. Dependence of the temperature gradient of SiC nanowires
with different cross sections (2.05 × 2.05 = 4.20 and
2.92 × 2.92 = 8.53 nm2) on the size of the supercell along the wire
direction at T = 500 K.

and different mass of the atoms on the surface can be studied
without any additional complicating factors such as the surface
geometry. Our prediction is that C terminated wires will show
higher thermal conductivity compared to Si terminated ones of
the same dimensions and shape.

Previous MD studies of the thermal conductivity in
bulk Si report convergence problems and finite size effects,
if supercells smaller than the phonon mean free path are
used [27]. For nanowires, the mean free path is mainly
controlled by the wire cross section and we expect only a
small influence on the nanowire length. This is confirmed by
our calculations, as is seen in figure 5 where we show the
calculated temperature gradient (dT/dx) as a function of the
length of the supercell along the wire direction for different
wires considered in this study. It is clear that the results are
well converged and, contrary to the case of bulk considered
above, finite size effects are less crucial for the nanowires.

Surface scattering is generally temperature independent
in bulk systems [39]. We have chosen the wire with the
smaller cross section 2.05 nm × 2.05 nm and studied both
C and Si terminations. The temperature dependence of the
thermal conductivity is shown in figure 6. Our results show
a very small variation of κ for temperatures 400–600 K.
The only exception is C terminated wires at 600 K where
the calculations show a clear drop. For higher temperatures
and C terminated wires it became very difficult to obtain a
constant temperature equilibrium, since we observed diffusion
and atomic rearrangement of the nanowire surface. This
temperature induced disorder for C terminated wires at T =
600 K and above, produced by the Tersoff potential for SiC,
is the reason for the drop of the thermal conductivity for C
termination shown in figure 6.

The calculated results depend on the accuracy of the
interatomic potential. Recently Broido et al compared the
calculated thermal conductivity of Si using the most popular
classical potential parameterizations of Stillinger–Weber and
Tersoff [40]. Both potentials gave satisfactory agreement with
experiment for bulk at low temperatures. However, for higher

Figure 6. Temperature dependence of SiC nanowires of
2.05 × 2.05 nm2 for Si (squares) and C (circles) terminations.

temperatures the calculated conductivities were 2–4 times
larger than the experimental values. This study revealed that
the classical potential parameterizations are fitted to reproduce
the elastic constants and this is not enough for modeling
thermal conductivity at higher temperatures where group
velocities away from the zone center are important. Despite
this fact, both parameterizations gave similar qualitative
behavior. Generally, for moderate temperatures, heat is carried
by the phonons at the zone center. Since the potential
was fitted to the elastic constants of SiC good agreement
with experiment should be expected for low temperatures.
However, comparison with experiment should be used with
caution since for lower temperatures quantum effects which
are beyond the scope of this work become important. Despite
the above problems, due to the inaccuracies of the classical
potentials used, for nanostructures the differences between
parameterizations seem to be less crucial, as was demonstrated
recently [29].

4. Conclusion

We report calculations for the thermal conductivity of bulk
β-SiC and SiC nanowires with cross sections ∼4–17 nm2.
The thermal conductivity is strongly reduced in the nanowires
compared to the bulk and generally it will depend on the
presence of defects on the surface. Here we have studied
a simple case of a uniform termination and showed that κ

changes by 20% for different surfaces, and increases with
increasing cross section.
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